

PROPERTY OF MATTHEW
 KONG

DO NOT REDISTRIBUTE

1

Introduction

Custom desktop personal computers (PC) have long intrigued me; their performance, stability,

and value contrasted greatly with the old and sluggish computers I grew up with. This was made

very apparent when I started running computationally intensive tasks like video editing software

and video games during the COVID-19 lockdowns. As such, I

decided to build my own computer, as can be seen in Fig. 1.

However, the costs of a computer are very high – which, as an

unemployed student, made the prospect of building and

operating my own PC less feasible. These costs generally stem

from the Central Processing Unit (CPU), which is the component

that is responsible for performing calculations. A faster CPU

therefore increases the overall performance of the computer, though the parameters modified to

achieve this increase the operation cost. My paper therefore explores my journey to find a

balance between the costs and the performance of my CPU. The model of CPU I tested, along

with the rest of the components of my PC, can be found in Appendix A.

Modern CPUs do not consist of a single processor, however; instead, they are composed of

several individual processors called cores that perform calculations independently of each other.

Some tasks require only one core, and some can utilize many. I run both single-core and multi-

core workloads on my computer, and so the speed and costs of both are important to me. This

paper therefore explores what CPU parameters are optimal for both scenarios.

Fig 1: An image of my computer.

PROPERTY OF MATTHEW
 KONG

DO NOT REDISTRIBUTE

2

Other than upfront purchasing costs, a CPU’s costs tend to result from its power consumption

and longevity, the latter of which affects the time before it needs to be replaced. These factors

are affected by several variables, such as the power limit, core voltages, and average core

temperatures. The software I used to monitor and manipulate these parameters can be found in

Appendix B.

CPU Package Power Tracking (PPT) was the independent variable in my investigation. In

essence, it is the maximum amount of power allowed to be supplied to the entire CPU, measured

in watts (W). Increased power consumption is generally not desired because it increases

operating costs, as electricity costs money. It generally allows for increased CPU voltage though,

which in turn results in greater performance.

Voltage (VID) is another parameter that affects the cost. It represents the electrical pressure

applied to a CPU, with higher VIDs pressuring the cores to operate at a faster processing speed.

However, elevated voltages can potentially reduce the CPU's lifespan, as the cores may

experience malfunctions when subjected to excessive pressure. This is problematic cost-wise

because it necessitates additional expenses for replacing the CPU earlier than expected.

CPU temperatures are closely related to both voltage and power consumption in that increases

in both directly result in a hotter running processor. Similarly to voltage, high temperatures also

lead to malfunctioning cores, which in turn decreases the lifespan of a CPU. This was measured

by the die temperature (Tdie), or the highest reported temperature across all cores.

PROPERTY OF MATTHEW
 KONG

DO NOT REDISTRIBUTE

3

The purpose of this paper is to find the balance between my CPU’s PPT, VIDs, Tdie, and its

achievable performance, so that I can more easily afford to operate the computer.

Methodology

To find the balance, I will use the point of

diminishing returns, i.e., where increases in the PPT

limit no longer lead to noticeable increases in

performance or longevity. There are two main

approaches I will use to accomplish this: a power

consumption optimization, and a CPU longevity optimization. The former was conducted via a

comparison between PPT limit increases and performance gains in several workloads.

Specifically, a preliminary gaming test was conducted within the domain of {𝑃𝑃𝑇 ∈

[40 𝑊, 100 𝑊] ∶ 10} in a video game called Forza Horizon 5 (FH5) using the in-built benchmark,

which is pictured in Fig. 2. I chose the lower boundary of this domain because my CPU would

not function at PPT limits less than 40 𝑊, and I chose the upper boundary because my CPU

would not consume above 200 𝑊 of power in any of my tests. Outside of video editing, this video

game represents the computationally intensive task that I run the most on my computer. It is

particularly useful for the purposes of this paper because performance in this benchmark is

determined by how many frames per second (FPS) can be processed and rendered in the

benchmark run, which leads to an observably smoother experience. I was therefore able to use

this metric to determine where I stopped noticing a difference in FPS increase, which I then

converted to a percentage of the regression’s asymptote so that I could find the point of

diminishing returns in other CPU benchmarks.

PROPERTY OF MATTHEW
 KONG

DO NOT REDISTRIBUTE

4

I then increased the PPT limit and observed performance increases in the multi-core and single-

core tests of Cinebench R23 (Fig. 3) within the

domain of {𝑃𝑃𝑇 ∈ [40 𝑊, 200 𝑊] ∶ 10}. I chose this

domain for the same reasons as in the FH5

benchmark. The performance in both benchmarks is

represented by a score, where a higher score

signifies a faster-running CPU. I then performed regressions based on the PPT limit and its

associated score, after which I solved for the optimum PPT limits using the previously

mentioned percentage.

I also optimized CPU longevity, which was largely centered around the VIDs and Tdie values

reported during the Cinebench R23 multi-core benchmark runs. Since the trends of both values

were similar in the single-core benchmark, I limited my scope to the multi-core tests.

Afterwards, I observed the impact of increased PPT limits on the VIDs using a regression

analysis. In this analysis, I found the inflection point, and subsequently its corresponding PPT

limit. Then, I observed the impact of increases in PPT limit on the Tdie and performed a

regression. My primary goal with this was to determine the PPT limit that results in “unsafe”

temperatures – that is, temperatures that lead to rapid CPU degradation. However, my CPU

never reached the maximum rated temperature of 95 °𝐶, and so I resorted to a more qualitative

temperature limit. In my computer, fans are installed to cool the CPU, and the speed at which

they spin corresponds with its temperatures. When fans spin faster, they produce more noise,

which can be distracting when the computer is in use. Therefore, by adjusting their speed until

Fig 3: A Cinebench R23 benchmark run.

PROPERTY OF MATTHEW
 KONG

DO NOT REDISTRIBUTE

5

they became distracting, I found an ideal Tdie value and the corresponding PPT limit. The fan

curve used to determine this value can be seen in Appendix C.

After these tests, I averaged the PPT limits of the multi-core tests to find the point of

diminishing returns for both multi-core and single-core CPU workloads.

Preliminary Forza Horizon 5 (FH5) Benchmark Analysis

Table 1 is a summary of the results of my Forza Horizon 5 runs. Since

the rate of FPS increase seems to approach 0 as the PPT increases, I

decided to perform a regression of the data in Desmos with a

vertically reflected exponential decay function. The following is the

formula I regressed, where 𝑥1 represents the PPT limit, and 𝑓1(𝑥1)

represents the average FPS achieved with respect to 𝑥1.

𝑓1(𝑥1) = −𝑎(𝑥1−𝑏) + 𝑐

This produced the following values, which are kept to 4 significant figures to match the FPS

average, and this was kept constant throughout the paper.

1. 𝑎 = 0.9335: Since 0 < 𝑎 < 1, the function decreases exponentially, which allows for the

FPS to approach the asymptote as the PPT limit approaches ∞, and therefore results in

the expected levelling off behaviour.

2. 𝑏 = 123.2: This value horizontally translates the function 123.2 𝑊 right, which is

necessary since the data does not appear to cross the origin. This makes the regression

PPT Limit
(W)

FH5 FPS
Average

40 40.10
50 143.4
60 291.9
70 309.2
80 322.3
90 318.8

100 319.5

Table 1: PPT limit (W) vs. FH5
FPS Averages. Tables with all
raw data collected can be
found in Appendix D.

PROPERTY OF MATTHEW
 KONG

DO NOT REDISTRIBUTE

6

less accurate though, since it implies the existence of negative FPS, which is not

possible. However, my CPU would not accept PPT limits below 40 𝑊, so I believe this is

an acceptable limitation and thus it is still sufficiently representative of its behaviour.

3. 𝑐 = 336.6: This value is the horizontal asymptote of the function. It represents the

theoretical highest FPS achievable, assuming an infinite power limit. As expected, the

measured scores generally appear to approach these values as PPT limit increases.

However, datapoints in the domain of {𝑃𝑃𝑇 ∈ [80 𝑊, 100 𝑊] ∶ 10} do not follow this

trend, as they appear to level off about 𝑦 = 325. I therefore manually set it to 325 for

𝑔1(𝑥1) with newly regressed 𝑎 and 𝑏 values, which produced an asymptote that more

closely resembled the observed right end behaviour. Below is a graph of both functions,

where 𝑦1 = 336.6 is the asymptote of 𝑓1(𝑥1) and 𝑦2 = 325 is the asymptote of 𝑔1(𝑥1).

Fig. 4: PPT Limit (W) vs. average Forza Horizon 5 FPS plotted with two exponential regressions and their respective

asymptotes.

As can be seen in Fig. 4, neither regression fits the data perfectly. However, 𝑔1(𝑥1) with its

asymptote of 𝑦2 = 325 more closely follows the right end behaviour of the data (where an FPS

PROPERTY OF MATTHEW
 KONG

DO NOT REDISTRIBUTE

7

value greater than 325 is not achieved), and so I deemed it to be a better-fitting model. This

resulted in an 𝑟2 of 0.9558, which signifies that there exists a strong correlation.

I then sought to determine the point of diminishing returns for 𝑔1(𝑥1). From my own experience,

I couldn’t tell a difference in visual smoothness once it reached about a 1 𝐹𝑃𝑆 ∙ 𝑊−1 increase,

and so I found the derivative at this point on the regression to solve for the FPS achieved. By

letting 𝑔1(𝑥1) = 𝑦 where 𝑦 represents the FPS, and using Leibniz notation, I found the derivative.

𝑦 = −0.9267(𝑥1−114.7) + 325

𝑑𝑦

𝑑𝑥1
= −[ln (0.9267)][0.9267(𝑥1−114.7)]

Then, I let the derivative be equal to the point of diminishing returns.

−[ln (0.9267)][0.9267(𝑥1−114.7)] = 1

𝑥1 = log0.9267 [−
1

ln (0.9267)
] + 114.7

𝑥1 ≈ 80.93 𝑊

Afterwards, I substituted 𝑥1 into 𝑔1(𝑥1) to find the FPS at 𝑥1.

𝑦 = −0.9267(80.93−114.7) + 325

𝑦 ≈ 311.9 𝐹𝑃𝑆

However, this coordinate isn’t useful outside of this specific benchmark because other

benchmarks use different performance metrics, namely a relative score instead of FPS. As such,

I decided to convert it to a percentage of the asymptote, which could then be used to find the

point of diminishing returns for other benchmarks with exponential regressions. In the following

PROPERTY OF MATTHEW
 KONG

DO NOT REDISTRIBUTE

8

formula, 𝐶𝐹 represents the conversion factor, or the percentage of the asymptote at the point of

diminishing returns. Additionally, 𝑦 is the optimal FPS, and 𝑦2 is the asymptote.

𝐶𝐹 =
𝑦

𝑦2

≈
311.9

325

𝐶𝐹 ≈ 96.0%

Cinebench R23 Single-Core Analysis

Table 2 is a summary of the results of my Cinebench R23 single-

core runs. This data set seemed to follow a pattern like that of

the Forza Horizon 5 benchmark, where the performance is

exponential and approaches a horizontal asymptote from −∞ as

the PPT limit increases. I thus decided to utilize the same

regression formula. In Desmos, my regression produced the

following equation.

𝑓2(𝑥2) = −0.8629(𝑥2−84.38) + 1636

I then plotted the PPT Limit against the Cinebench R23 single-core score.

PPT Limit (W)

Cinebench
R23
Single-Core
Score

40 943
50 1466
60 1627
70 1618
80 1626
90 1636

100 1634

Table 2: PPT limit (W) vs. Cinebench
R23 Single-Core Score. Tables with
all raw data collected can be found
in Appendix D.

PROPERTY OF MATTHEW
 KONG

DO NOT REDISTRIBUTE

9

Fig. 5: PPT Limit (W) vs. Cinebench R23 Single-Core Score plotted with an exponential regression and its asymptote.

As can be seen in Fig. 5, the regression fits the data well; the regression produced an 𝑟2 of

0.9974, which is close to a perfect 𝑟2 of 1 and signifies a strong correlation. Although the data

point for 𝑥2 = 90 𝑊 intersects the asymptote, I deemed it to be acceptable because of run-to-

run variance; Cinebench R23 isn’t perfectly consistent because my CPU also needs to run other

background tasks. Small deviations from the expected pattern are thus expected.

Then, to find the point of diminishing returns, I multiplied the asymptote (𝑦) with the previously

obtained conversion factor (𝐶𝐹) to calculate the point of diminishing returns (𝑃𝐷𝑅).

𝑃𝐷𝑅 = y(𝐶𝐹)

≈ 1636(0.96)

≈ 1571

Afterwards, I solved 𝑓(𝑥) = 1571 to find the optimal PPT limit for this benchmark.

−0.8629(𝑥2−84.38) + 1636 = 1571

log0.8629(1636 − 1571) = 𝑥2 − 84.38

PROPERTY OF MATTHEW
 KONG

DO NOT REDISTRIBUTE

10

𝑥2 ≈ 56.0 W

Therefore, my CPU’s most optimal PPT limit for single-core workloads is 56.0 𝑊.

Cinebench R23 Multi-Core Analysis

The following is a summarized table of the results of my Cinebench R23 multi-core runs.

PPT limit (W) Cinebench R23 Multi-Core Score Average Core VIDs (V) CPU Tdie (°C)

40 2419 0.8941 31.5
50 5328 0.8931 33.4
60 9412 0.9033 35.5
70 12356 0.9114 39.6
80 15878 0.9235 43.0
90 18142 0.9301 46.6
100 19165 0.9731 50.6
110 19953 1.010 54.3
120 20598 1.051 57.5
130 21231 1.088 60.9
140 21788 1.122 61.3
150 21991 1.138 67.7
160 22291 1.179 71.4
170 22401 1.203 75.2
180 22581 1.232 79.3
190 22542 1.242 81.7
200 22697 1.237 81.7

Table 3: A table displaying the raw data collected during the Cinebench R23 multi-core tests. Tables with all raw data
collected can be found in Appendix D.

I started my analysis of this data with a comparison of the PPT limits and the corresponding

Cinebench R23 multi-core scores. This seemed to follow a similar exponential relationship to the

Forza Horizon 5 analysis, so I used the same regression formula on this data set using Desmos,

where 𝑥3 represents the Cinebench R23 multi-core score, and 𝑓3(𝑥3) represents the PPT limit

with respect to 𝑥3. This produced the following equation.

𝑓3(𝑥3) = −0.9747(𝑥3−429.5) + 23325

PROPERTY OF MATTHEW
 KONG

DO NOT REDISTRIBUTE

11

Using this regression, I plotted the PPT limit against the multi-core score.

Fig. 6: PPT limit (W) vs. Cinebench R23 Multi-Core Score plotted with an exponential regression and its asymptote.

The data in Fig. 6 seems to fit the regression quite well, with an 𝑟2of 0.9925 indicating a strong

correlation. Then, to find the score at the point of diminishing returns, I multiplied the asymptote

(𝑦) by the conversion factor obtained in the Forza Horizon 5 benchmark (𝐶𝐹) to obtain the point

of diminishing returns (𝑃𝐷𝑅). See the full calculation in Appendix E.

𝑃𝐷𝑅 ≈ 22392

Then, I solved for the PPT limit by letting 𝑓(𝑥) = 𝑃𝐷𝑅. See the full calculation in Appendix E.

𝑥3 ≈ 163.0 𝑊

Therefore, my CPU’s most optimal PPT limit for multi-core workloads is 163.0 𝑊.

Voltage Analysis

Outside of just power consumption optimizations, I also wanted to optimize my CPUs longevity.

Specifically, since the voltage supplied to a CPU directly influences its lifespan, I wanted to

PROPERTY OF MATTHEW
 KONG

DO NOT REDISTRIBUTE

12

minimize this value as much as possible. To do this, I compared the PPT Limit with the Average

Core VIDs measured in the Cinebench R23 Multi-Core benchmark, the values of which can be

found in Table 3. However, as seen in the following graph, the relationship between these two

variables was not the same as in the power consumption optimizations.

Fig. 7: PPT limit (W) vs. Cinebench R23 Multi-Core VIDs.

As can be seen in seen in Fig. 7, the data does not seem to follow the same concave-down

exponential increase relationship as in the power consumption optimizations. In fact, it appears

almost logistic, with both the right and left end behaviours levelling off. However, a logistic

regression would imply the existence of horizontal asymptotes, which does not coincide with the

behaviour that should occur; generally, increases in power consumption are the direct result of

increases in voltage, and so the voltage should never approach a set value without ever

intersecting. A sine regression would also model the right and left end behaviours for PPT values

within the domain of {𝑃𝑃𝑇 ∈ [40 𝑊, 200 𝑊]: 10}, but is bound by a similar flaw; sine functions

are periodic, meaning they are not always increasing. This would therefore imply that certain

PROPERTY OF MATTHEW
 KONG

DO NOT REDISTRIBUTE

13

domains of PPT values greater than those tested would result in decreasing voltages, which is

incorrect because increases in power consumption should always result in increases in voltage.

I settled on an inverse tangent function, which I deemed to be more fitting because it effectively

models the right and left end behaviours of the data, and never approaches an asymptote. Below

is the function I regressed, where 𝑥4 represents the PPT, and 𝑓4(𝑥4) represents the voltage at 𝑥4.

𝑓4(𝑥4) = 𝑎 arctan(𝑏𝑥4 − 𝑐) + 𝑑, {𝑓4(𝑥4) ∈ [−
𝑎𝜋

2
+ 𝑑,

𝑎𝜋

2
+ 𝑑]}

After performing the regression using Desmos, I obtained the following values.

1. 𝑎 = 0.1620: Since the scale that VIDs operate on is very small, a vertical compression

allows the function to model this scale more effectively.

2. 𝑏 = 0.02540: Similarly, a horizontal stretch better models the scale of the PPT limit.

3. 𝑐 = 3.226: A phase shift is needed because the inflection point of the base inverse

tangent function is on the y-axis, which does not occur in this data set.

4. 𝑑 = 1.070: Similarly, a vertical translation is needed because the inflection point of the

base inverse tangent function is on the x-axis, which does not occur in this data set.

Fig. 8: PPT limit (W) vs. Cinebench R23 Multi-Core VIDs plotted with an inverse tangent regression.

PROPERTY OF MATTHEW
 KONG

DO NOT REDISTRIBUTE

14

As seen in the Fig. 8, this regression models the relationship quite well, with an 𝑟2 of 0.996

indicating a strong correlation between the variables. However, like with the previous

optimizations, this model does not extrapolate well for PPT limits below those tested. For

instance, a PPT limit of 0 𝑊 should theoretically result in a VID of 0 𝑉, since the CPU would not

be able to run without power. This is not represented in the model. In practice, this flaw does not

matter since my CPU is can’t use a PPT limit less than 40 𝑊, and so I believe this is acceptable.

Since the regression is an inverse tangent function, it is concave down after an inflection point.

This is likely because increases to the PPT limit also lead to increases in temperature, which

inadvertently hinders the voltages achievable by the CPU. This process is known as thermal

throttling and is not desirable because it can lead to rapid CPU degradation. As such, the

greatest PPT limit where this does not occur is optimal, so I let the inflection point be the point

of diminishing returns. By letting 𝑓4(𝑥4) = 𝑦 where 𝑦 represents the FPS, and using Leibniz

notation, I found the derivative.

𝑦 = 0.1620 arctan(0.02540𝑥4 − 3.226) + 1.070

𝑑𝑦

𝑑𝑥4
=

(0.1620)(0.02540)

1 + (0.02540𝑥4 − 3.226)2

Then, I found the second derivative.

𝑑2𝑦

𝑑𝑥4
2

=
−(0.1620)(0.02540)

𝑑
𝑑𝑥4

[1 + (0.02540𝑥4 − 3.226)2]

[1 + (0.02540𝑥4 − 3.226)2]2

𝑑2𝑦

𝑑𝑥4
2

=
−2(0.1620)(0.02540)(0.02540𝑥4 − 3.226)(0.02540)

[1 + (0.02540𝑥4 − 3.226)2]2

To find the inflection point, I set the second derivative equal to zero.

PROPERTY OF MATTHEW
 KONG

DO NOT REDISTRIBUTE

15

−2(0.1620)(0.02540)(0.02540𝑥4 − 3.226)(0.02540)

[1 + (0.02540𝑥4 − 3.226)2]2
= 0

−2(0.1620)(0.02540)(0.02540𝑥4 − 3.226)(0.02540) = 0

𝑥4 ≈ 127.0 𝑊

Therefore, my CPU’s most optimal PPT limit for multi-core workloads, when considering voltage,

is 𝑥4 ≈ 127.0 𝑊.

Temperature Analysis

Similarly to voltage, operating temperature is also very closely tied to a CPU’s lifespan, and so I

decided to observe the effect of increases to the PPT limit on the CPU Tdie in the Cinebench

R23 multi-core test. The temperature data presented in Table 3 appears to follow a linear

increase, and so I decided to perform a linear regression using the following expression, where 𝑥

represents the PPT limit, and 𝑓5(𝑥5) represents the Tdie temperature (°C) at 𝑥5.

𝑓5(𝑥5) = 𝑎𝑥5 + 𝑏

After performing the regression in Desmos, I obtained the following values.

1. 𝑎 = 0.3396: This value represents the gradient of the increase in Tdie temperature.

2. 𝑏 = 16.38: A vertical translation is needed since the temperature does not appear to

intersect the origin.

I then plotted the PPT limit against the Tdie temperature.

PROPERTY OF MATTHEW
 KONG

DO NOT REDISTRIBUTE

16

Fig. 9: PPT limit (W) vs. Cinebench R23 Multi-Core VIDs plotted with an inverse tangent regression.

As seen in Fig. 9, the linear regression fits this data very well, with an 𝑟2 of 0.9949 indicating a

very strong relationship. However, this regression does not extrapolate accurately. For instance,

it implies that a PPT limit of 0 𝑊 results in a Tdie of 16.38 °𝐶, which is lower than room

temperature (See appendix A for my test conditions). My CPU would not accept PPT limits below

40 𝑊 though, so I believe that this is an acceptable limitation. It also implies that the Tdie

approaches ∞ as the PPT limit increases, which is not possible because it should thermally

throttle after it reaches the maximum allowed temperature of 95 °𝐶, where the CPU lifespan is

drastically decreased. These values are thus not ideal cost-wise, and so I believe that this is also

an acceptable limitation.

To find the point of diminishing returns, I observed the noise produced by the fans in my

computer. Specifically, my fans spin faster in response to higher CPU temperatures, which in

PROPERTY OF MATTHEW
 KONG

DO NOT REDISTRIBUTE

17

turn produces more noise and can be distracting if too loud. I thus manually altered the fan

speed and found that it became unpleasant to listen to at about 80% speed, which is set to

correspond with a 70 °𝐶 Tdie temperature (See Appendix C for the default fan curve). So, by

letting 𝑓5(𝑥5) = 70, I found the point of diminishing returns in terms of PPT limit.

0.3396𝑥5 + 16.38 = 70

𝑥5 ≈ 157.9 𝑊

Therefore, my CPU’s most optimal PPT limit for multi-core workloads, when considering

temperature, is 𝑥5 = 157.9 𝑊.

How well does my data fit?

Qualitatively, my regressions model my data sufficiently well. A quantitative analysis of the

regressions was able to substantiate this using the coefficient of

determination (𝑟2), which is a measure of how strong the correlation is;

values closer to 1 signify a greater correlation, and values closer to 0

signify a lower correlation. Using Desmos, I was able to obtain the 𝑟2

for each regression, which can be seen in Table 4.

The 𝑟2 values for each of the regressions are all very high, which

signifies a very strong relationship. However, the 𝑟2 value for 𝑔1(𝑥1) is noticeably lower than the

other regressions (albeit still very high) though, which means that it is less precise. As such, I

decided to omit its point of diminishing returns (𝑥1) from my calculation of the optimal PPT limit.

Regression r2

g1(x1) 0.9558
f2(x2) 0.9974
f3(x3) 0.9925
f4(x4) 0.9960
f5(x5) 0.9949

Table 3: Regression
functions and their 𝑟2.

PROPERTY OF MATTHEW
 KONG

DO NOT REDISTRIBUTE

18

Conclusion

 By calculating the average point of diminishing returns, I determined the optimal PPT limit for

both single-core and multi-core scenarios (Fig. 10). The optimal PPT limit for my CPU in multi-

core workloads is therefore 149.3 𝑊, and 56.0 𝑊 for

single-core workloads. These values are the result of

optimizations that consider its longevity, performance

and power consumption. Furthermore, the regressions

performed on the data all have high 𝑟2 values, meaning

that there are strong relationships.

While my regression models may have technically yielded

precise results, they do possess certain limitations. Notably, the averaging of PPT limits from

various multi-core optimizations fails to accurately represent each optimization individually. The

voltage optimization (𝑥4), for instance, is 12.3 𝑊 less than the average (𝑥𝑚𝑢𝑙𝑡𝑖), thus surpassing

the inflection point and falling within voltage ranges I deemed unsafe. To address this, I could

introduce weighting by using the following formula in a future analysis.

𝑥𝑚𝑢𝑙𝑡𝑖 = 0.6𝑥3 + 0.2𝑥4 + 0.2𝑥5

Determining the weighting is very subjective though. Do I value CPU performance more or less

than its lifespan, for instance? An extension could therefore be to qualitatively determine my

preferred weighting, which could produce a more desirable optimized PPT limit.

𝑥𝑚𝑢𝑙𝑡𝑖 =
𝑥3 + 𝑥4 + 𝑥5

3

𝑥𝑚𝑢𝑙𝑡𝑖 =
163.0 + 127.0 + 157.9

3

𝑥𝑚𝑢𝑙𝑡𝑖 = 149.3 𝑊

And…

𝑥𝑠𝑖𝑛𝑔𝑙𝑒 = 𝑥2

𝑥𝑠𝑖𝑛𝑔𝑙𝑒 = 56.0 𝑊

Fig. 10: Finding the mean optimal PPT
limits.

PROPERTY OF MATTHEW
 KONG

DO NOT REDISTRIBUTE

19

Additionally, several of my models do not realistically extrapolate to PPT limits that are less than

those tested. For example, my Cinebench R23 multi-core regression model implies that a PPT

limit of 0 𝑊 would result in a negative score, which is not possible. However, my CPU cannot

operate at PPT limits below 40 𝑊, so this extrapolation is not applicable. Regardless, I could try

to account for this in future analyses by using a function that exhibits a horizontal asymptote in

both the right and left end behaviours, such as a logistic curve.

Furthermore, I only analyzed my specific CPU, and so the results are not applicable elsewhere.

To address this limitation, I could find the point of diminishing returns of other CPU models in a

future analysis.

Overall, I was very pleased with my analysis and its outcomes. The investigation has enabled me

to fine-tune the PPT limit in relation to my CPUs performance, VIDs, and Tdie, making it more

feasible for me to run CPU-intensive tasks on my computer. It has also allowed me to explore

several mathematical concepts and their use in the real world. Calculating the derivative of

exponential and inverse tangent functions, for instance, has broadened my understanding of

differential calculus, and has fostered a greater appreciation of the intricacies of mathematical

modeling and analysis.

PROPERTY OF MATTHEW
 KONG

DO NOT REDISTRIBUTE

20

References

Alcorn, Paul. (21 July 2022). How to Safely Overclock Your CPU: Get the Most MHz from Your

Processor. Tom’s Hardware. www.tomshardware.com/how-to/how-to-overclock-a-cpu

(26 May 2023). Desmos | Let’s Learn Together. Desmos. www.desmos.com/

Lathan, Patrick. (15 July 2019). Explaining AMD Ryzen Precision Boost Overdrive (PBO), AutoOC,

& Benchmarks. GamersNexus. www.gamersnexus.net/guides/3491-explaining-precision-

boost-overdrive-benchmarks-auto-oc

Fisher, R. (2018, June 11). What’s Thermal Throttling and How to Prevent It. TechSpot; TechSpot.

https://www.techspot.com/article/1638-what-is-thermal-throttling/

PROPERTY OF MATTHEW
 KONG

DO NOT REDISTRIBUTE

21

Appendices

Appendix A

Test conditions and the components of my PC.

Test Conditions

• Room temperature set to a constant 24 °C using an air

conditioner.

• My RAM was overclocked (Fig. 11).

• My GPU was not overclocked.

• I conducted the tests using the Windows 10 IoT

Enterprise LTSC 21H2 19044.3086 operating system.

• My motherboard BIOS was on version P2.20 (AGESA

1.2.0.6b).

PC Components

• CPU: AMD Ryzen 9 5900X

• CPU Cooler: Deepcool CASTLE 360EX

• Thermal Compound: ARCTIC MX-4

• Motherboard: ASRock B550 Steel Legend

• RAM: Timetec Pinnacle Konduit RGB 2x32GB DDR4 3200MHz CL16-18-18-38

• Storage

o Kingston A2000 1TB

o Teamgroup MP33 1TB

• GPU: ASUS Dual RTX 3060 Ti

• Case: Corsair 4000D Airflow

Fig. 11: The overclock settings of
my RAM.

PROPERTY OF MATTHEW
 KONG

DO NOT REDISTRIBUTE

22

• PSU: EVGA SuperNOVA 750 B2

• Fans

o ARCTIC P12 PWM PST A-RGB (6 installed)

o Deepcool TF-120S (2 installed)

• Monitor: Samsung S70A 27.0” 3840x2160 60 Hz

Appendix B

Manipulating PPT and monitoring CPU performance, VIDs and Tdie.

The PPT limit was manipulated via my motherboard’s BIOS using PBO. Besides PPT, the

following are the PBO settings that I modified.

• EDC: 155 𝐴

• TDC: 125 𝐴

• Boost override: 50 𝑀𝐻𝑧

To monitor the VIDs and Tdie, I used HWInfo, which outputted the values to a .csv file with a

polling period of 500 𝑚𝑠. This was then aggregated in Excel and graphed with Desmos. The

graphs were exported as a .svg file, and then edited in Adobe Illustrator.

PROPERTY OF MATTHEW
 KONG

DO NOT REDISTRIBUTE

23

Appendix C

The default fan curve.

Fig. 12 shows the default fan curve of my PC,

which was found in a program called Fan Control.

Using the same program, I adjusted the fan speed

until I became annoyed with its sound.

Appendix D

All the aggregated raw data collected during my tests.

https://docs.google.com/spreadsheets/d/e/2PACX-1vSP-

LibnBN91BJLOoXrvWcOv3dq1jTbNC7blbbNpJ-04MCo6gHLBpCzdWx6UEL7LA/pubhtml

Appendix E

Repeated calculations that were removed for the sake of concision.

Calculating PDR for 𝑓3(𝑥3):

𝑃𝐷𝑅 = y(𝐶𝐹)

≈ 23325(0.96)

≈ 22392

Fig. 12: The default fan curve.
PROPERTY OF MATTHEW

 KONG

DO NOT REDISTRIBUTE

https://docs.google.com/spreadsheets/d/e/2PACX-1vSP-LibnBN91BJLOoXrvWcOv3dq1jTbNC7blbbNpJ-04MCo6gHLBpCzdWx6UEL7LA/pubhtml
https://docs.google.com/spreadsheets/d/e/2PACX-1vSP-LibnBN91BJLOoXrvWcOv3dq1jTbNC7blbbNpJ-04MCo6gHLBpCzdWx6UEL7LA/pubhtml

24

Calculating 𝑥3 using 𝑃𝐷𝑅:

−0.9747(𝑥3−429.5) + 23325 = 22392

0.9747(𝑥3−429.5) = 23325 − 22392

log0.9747(23325 − 22392) = 𝑥3 − 429.5

𝑥3 ≈ 163.0 𝑊

PROPERTY OF MATTHEW
 KONG

DO NOT REDISTRIBUTE

